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Abstract. Chiral symmetry breaking may exhibit significantly different patterns in two chiral limits: Nf = 2
massless flavours (mu =md = 0, ms physical) and Nf = 3 massless flavours (mu =md =ms = 0). Such
a difference may arise due to vacuum fluctuations of ss̄ pairs related to the violation of the Zweig rule in
the scalar sector, and it could yield numerical competition between contributions counted as leading and
next-to-leading order in the chiral expansions of the observables. We recall and extend resummed chiral
perturbation theory (ReχPT), a framework that we introduced previously to deal with such instabilities: it
requires a more careful definition of the relevant observables and their one-loop chiral expansions. We ana-
lyse the amplitudes for low-energy ππ and πK scatterings within ReχPT, which we match in subthreshold
regions with dispersive representations obtained from the solutions of the Roy and Roy–Steiner equations.
Using a frequentist approach, we constrain the quark mass ratio as well as the quark condensate and the
pseudoscalar decay constant in the Nf = 3 chiral limit. The results mildly favour significant contributions
of vacuum fluctuations suppressing the Nf = 3 quark condensate compared to its Nf = 2 counterpart.

1 Introduction

A striking feature of the standard model consists in the
mass hierarchy obeyed by the light quarks:

mu ∼md�ms ∼ ΛQCD� ΛH , (1)

where ΛQCD is the characteristic scale describing the run-
ning of the QCD effective coupling and ΛH ∼ 1 GeV the
mass scale of the bound states not protected by chiral sym-
metry. Therefore, the strange quark may play a special role
in the low-energy dynamics of QCD:

(i) it is light enough to allow for a combined expansion of
observables in powers ofmu,md,ms around the Nf =
3 chiral limit (meaning three massless flavours):

Nf = 3 : mu =md =ms = 0 ; (2)

(ii) it is sufficiently heavy to induce significant changes in
order parameters from the Nf = 3 chiral limit to the
Nf = 2 chiral limit (meaning two massless flavours):

Nf = 2 : mu =md = 0 ms physical ; (3)

(iii) it is too light to suppress efficiently loop effects of mas-
sive s̄s pairs (contrary to c, b, t quarks).

These three arguments suggest that s̄s sea pairs may
play a significant role in chiral dynamics, leading to differ-
ent patterns of chiral symmetry breaking in theNf = 2 and
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Nf = 3 chiral limits. Then, chiral order parameters such as
the quark condensate and the pseudoscalar decay constant,

Σ(Nf ) =− lim
Nf
〈ūu〉 , F 2(Nf ) = lim

Nf
F 2π , (4)

would have significantly different values in the two chiral
limits (limNf denoting the chiral limit with Nf massless
flavours).
The role of s̄s pairs in the structure of QCD vacuum is

a typical loop effect: it should be suppressed in the large-
Nc limit, and it can be significant only if the Zweig rule is
badly violated in the vacuum (scalar) channel JPC = 0++.
On general theoretical grounds [1], one expects s̄s sea-
quark pairs to have a paramagnetic effect on the chiral
order parameters, so that they should decrease when the
strange quark mass is sent to zero: for instance,Σ(2;ms)≥
Σ(2;ms = 0), and similarly for F

2, which translates into
the paramagnetic inequalities:

Σ(2)≥Σ(3) , F 2(2)≥ F 2(3) . (5)

However, the size of this paramagnetic suppression is not
predicted. Thus, it is highly desirable to extract the size
of the chiral order parameters in Nf = 2 and Nf = 3 limits
from experiment.
Recent data on ππ scattering [2, 3] together with older

data and numerical solutions of the Roy equations [4] al-
lowed us to determine the Nf = 2 order parameters ex-
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pressed in suitable physical units [5]:

X(2) =
(mu+md)Σ(2)

F 2πM
2
π

= 0.81±0.07 , (6)

Z(2) =
F 2(2)

F 2π
= 0.89±0.03 . (7)

A different analysis of the data in [2, 3] with the additional
input of dispersive estimates for the (non-strange) scalar
radius of the pion led to a larger value of X(2) [6]. X(2)
and Z(2) seem to be fairly close to 1, so that corrections
related to mu,md �= 0 (while ms remains at its physical
value) have a limited impact on the low-energy behaviour
of QCD. In turn, two-flavour chiral perturbation theory
(χPT) [7], which consists in an expansion in powers of mu
and md around the Nf = 2 chiral limit, would not suffer
from severe problems of convergence.1

Two-flavourχPT [7] deals only with dynamical pions in
a very limited range of energy. In order to include K- and
η-mesons dynamically and extend the energy range of in-
terest, one must use three-flavour χPT [13] in which the
expansion in the three light-quark masses starts around
the Nf = 3 vacuum mu =md =ms = 0. From the above
discussion, large vacuum fluctuations of s̄s pairs would
have a dramatic effect on Nf = 3 chiral expansions. The
leading-order (LO) term, which depends on the O(p2) low-
energy constants F 2(3) and Σ(3), would be damped. On
the other hand, next-to-leading-order (NLO) corrections
could be enhanced, in particular those related to Zweig
rule violation in the scalar sector. For instance, the Gell-
Mann–Oakes–Renner relation would not be saturated by
its LO term and would receive sizable numerical contribu-
tions from terms counted as NLO in the chiral counting.
Unfortunately, the experimental data on K and η de-

cays are not accurate enough to assess the role of ss̄
pairs in the Nf -dependence of chiral symmetry break-
ing in a very precise way. However our understanding of
πK scattering at low energies has been improved recently
through the re-analysis of the dispersive Roy–Steiner equa-
tions [14]. A rapid analysis of its results in the framework
of three-flavour χPT hinted at significant vacuum fluctua-
tions encoded in some O(p4) chiral couplings, which calls
for a more detailed analysis of the πK system. Interesting
information can also be obtained from our current know-
ledge of ππ scattering, which we will include in our study.
To perform such an analysis, we develop andmodify the

framework presented in [1, 15, 16]. Specifically, our work
differs from [16] on three points: we consider not only ππ
but also πK scattering; our observables are the values of
the amplitudes in unphysical regions rather than subtrac-
tion constants of dispersion relations, and the matching
between theoretical and experimental representations is

1 Let us stress that new data of high accuracy are expected
from the NA48/2 Collaboration soon, which could affect these
results significantly [8]. Recent lattice simulations with two-
flavour dynamical quarks [9–12] may help to understand some
aspects of these questions, even though the results are prelimi-
nary and rather delicate to interpret.

performed in a frequentist approach, not in a Bayesian
framework.
In Sect. 2, we motivate and explain resummed chiral

perturbation theory (ReχPT), a framework designed to
derive three-flavour chiral series at one loop, in which vac-
uum fluctuations of ss̄ pairs are resummed. In Sect. 3, we
apply ReχPT to ππ and πK scattering amplitudes and
we explain how we determine the same amplitudes disper-
sively in subthreshold regions, building upon the solutions
of the Roy and Roy–Steiner equations [4, 14]. In Sect. 4,
we discuss the matching of the chiral and dispersive re-
sults within a frequentist approach [17], and in Sect. 5
we present our results for the order parameters of Nf = 3
chiral symmetry breaking. In Sect. 6, we summarise and
discuss our results. The appendices are devoted to the ex-
pression of the scattering amplitudes in ReχPT, their eval-
uation from the Roy and Roy–Steiner equations and the
treatment of correlated data.

2 Resummed chiral perturbation theory

We start by describing in more detail the framework intro-
duced in [1, 15, 16] to expand the observables around the
Nf = 3 chiral limit in the case of significant vacuum fluctu-
ations. We take this opportunity to extend this framework
to deal with energy-dependent quantities.

2.1 Convergence of observables

In the introduction, we emphasised the possibility for a
three-flavour chiral series to exhibit a rather unusual be-
haviour, with numerical competition between leading and
next-to-leading order. In [16], we called such a numeri-
cal competition between terms of different chiral counting
instability of the expansion. A näıve argument based on
resonance saturation suggests that higher orders in the chi-
ral expansion should be suppressed by powers of (Fπ/ΛH)

2.
However, such an argument does not apply to a leading-
order contribution proportional to Σ(3) [20–22]: there is
no resonance that could saturate the quark condensate.
Therefore we expect to encounter three-flavour chiral ex-
pansions with good overall convergence:

A=ALO+ANLO+AδA , δA� 1 , (8)

but the numerical balance between the leading-order ALO
and the next-to-leading-orderANLO depends on the impor-
tance of vacuum fluctuations of ss̄ pairs.
At the level of O(p4) Nf = 3 chiral perturbation the-

ory, the size of the vacuum fluctuations is encoded in the
low-energy constants (LECs) L4 and L6, whose values re-
main largely unknown. For a long time [13], they have been
set to zero at an arbitrary hadronic scale (typically the η
mass) assuming that the Zweig rule held in the scalar sec-
tor. More recent but indirect analyses based on dispersive
methods [14, 24–26] suggest values ofL4 andL6 which look
quite modest but are sufficient to drive the Nf = 3 order
parameters Σ(3) and F 2(3) down to half of their Nf = 2
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counterparts Σ(2) and F 2(2), leading to ALO � ANLO as
recalled in Sect. 2.3. In addition, two-loop analyses [27–30]
led to values of L4 and L6 off large-Nc expectations.
Unstable Nf = 3 chiral expansions (ALO ∼ ANLO) de-

mand a more careful treatment than in two-flavour χPT,
in which such instabilities are seemingly absent. For in-
stance, it would be wrong to believe that the chiral ex-
pansion of 1/A converges nicely.2 This might induce the
observed problems of convergence in recent two-loop com-
putations [27–29]: the latter treat the fluctuations encoded
in L4 and L6 as small and are not designed to cope with
a large violation of the Zweig rule in the scalar sector, lead-
ing to instabilities of the chiral series.
Observables with a good convergence in the sense of (8)

form a linear space, which we identify with connected QCD
correlators of axial/vector currents and their derivatives,
away from kinematic singularities. This choice promotes
some “good” observables that can be extracted from such
correlators, such as F 2P and F

2
PM

2
P (P = π,K, η): LO and

NLO may compete, but there should be only a tiny con-
tribution from NNLO and higher orders. On the contrary,
the chiral expansion of M2P (the ratio of the former quan-
tities) may exhibit bad convergence. Similarly, the good
observable associated with a form factor FP→Q describ-
ing a transition from a pseudoscalar meson P to a meson
Q will be FPFQFP→Q, where the decay constants FP and
FQ stem from wave-function renormalisation factors in the
LSZ reduction formula.

2.2 One-loop bare expansion of QCD Green functions

In a previous work [16], we proposed a framework to deal
with chiral expansions in the case of large fluctuations,
by resumming the terms containing the Zweig rule violat-
ing LECs L4 and L6. This framework, which we will call
resummed chiral perturbation theory (ReχPT), includes
consistently the alternatives of large and small vacuum
fluctuations. In this section, we explain how to expand
a good observable at one loop in ReχPT. We addressed
only energy-independent quantities in [16], where we ex-
plained in detail the similarities and differences of our
approach with respect to generalized chiral perturbation
theory [20–23].
We start from the one-loop generating functional for

three-flavour χPT [13]:

Z = Zt+Zu+ZA+ . . . , (9)

where the ellipsis stands for NNLO contributions. The
three terms of the one-loop generating functional are the
following.

– Zt is the sum of O(p
2) and O(p4) tree graphs and of

tadpole contributions:

Zt =
∑

P

∫
dx
F 20
6

⎧
⎨

⎩1−
3

16π2

◦

M2P
F 20
log

◦

M2P
µ2

⎫
⎬

⎭σ
∆
PP

2 This would be equivalent to claiming that 1/(1+x)� 1−x
is a reasonable approximation for x=O(1).

+
∑

P

∫
dx
3F 20
6

⎧
⎨

⎩1−
3

6π2

◦

M2P
F 20
log

◦

M2P
µ2

⎫
⎬

⎭σ
χ
PP

+

∫
dxLr4 , (10)

where F0 ≡ F (3),

F0 = F (3) , B0 =
Σ(3)

F (3)2
, r =

ms

m
. (11)

σ∆ and σχ collect source terms for vector/axial cur-
rents and scalar/pseudoscalar densities, and Lr4 is the
O(p4) chiral Lagrangian with renormalised couplings

Lri and H
r
i .

◦

M2P denotes the O(p
2) contribution to the

(squared) mass of the Goldstone boson P :

◦

M2π = Y (3)M
2
π ,

◦

M2K =
r+1

2
Y (3)M2π , (12)

◦

M2η =
2r+1

3
Y (3)M2π .

– Zu collects unitarity corrections corresponding to one-
loop graphs with two O(p2) vertices:

Zu =
∑

P,Q

∫
dxdy

[
{{∂µν− gµν�}M

r
PQ(x−y)

− gµνLPQ(x−y)}Γ̂
µ
PQ(x)Γ̂

ν
QP (y)

−∂µKPQ(x−y)Γ̂
µ
PQ(x)σ̄QP (y)

+
1

4
Jr(x−y)σ̄PQ(x)σ̄QP (y)

]
, (13)

where J,K,L,M are (renormalised) functions defined
from the one-loop scalar integral with mesons P and Q
propagating in the loop, and Γ̂µ and σ̄ = σ∆+σχ col-
lect source terms.
– ZA is the Wess–Zumino functional collecting anoma-
lous contributions.

The one-loop functional (9) has been derived using the
propagators and couplings of the O(p2) chiral Lagrangian,
and therefore it is expressed only in terms of chiral cou-
plings: F0 and B0, Li . . . [13]. In particular, the Gold-
stone degrees of freedom have masses truncated at O(p2),

denoted
◦

M2P . Large fluctuations should induce significant
differences between this quantity and the physical mass

M2P . Therefore, we want to replace
◦

M2P byM
2
P only when

justified by physics arguments, since this replacement may
have an important impact when comparing chiral expan-
sions with the experimental data.

– The anomalous contribution ZA corresponds to local
couplings for vector and axial currents and is not af-
fected by our discussion.
– For the unitarity corrections Zu, were we to consider
higher and higher orders of the chiral expansion, we
should obtain that the masses occurring in the func-
tions Jr, K, L and M r are physical masses, in order
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to get the low-mass two-particle cuts at the physical
positions. Therefore, we write those functions with the
physical masses of the Goldstone bosons. On the con-
trary, we keep the multiplying factors Γµ and σ̄ ex-
pressed in terms of the parameters of the effective La-
grangian (mq, B0, . . . ).
– The tadpole contributions present in Zt are derived
using the O(p2) contribution to the Goldstone boson

masses
◦

M2P . In [16], we have proposed the replacement

◦

M2P
32π2

log

◦

M2P
µ2

→

◦

M2P
32π2

log
M2P
µ2
. (14)

We could have kept
◦

M2P everywhere in Zt, and in par-
ticular inside the logarithm. However, the resulting ex-
pressions are easier to deal with, and the change has
only a tiny numerical impact: either MP is close to its

O(p2) term and the change is trivially justified, or
◦

M2P
is much smaller thanM2P and the whole tadpole contri-
bution is very small.
– Physical S-matrix elements are obtained from the
Green functions derived with the generating functional
by applying the LSZ reduction formula. The external
legs corresponding to incoming and outgoing particles
must be put on the mass shell. In the process, the prod-
ucts of the external momenta are translated into the
well-known Mandelstam variables. These kinematical
relations are valid for physical masses, and we will use

the latter (and not the O(p2) truncated masses
◦

M2P )
whenever we reexpress products of external momenta.
This prescription is consistent with the use of physi-
cal masses in the one-loop scalar integral present in the
unitarity term Zu.

Following the renormalisation procedure in [13], one
can easily check that (14) does not change the renormalisa-
tion-scale dependence of LECs at one loop. Actually,
the whole one-loop generating functional Z becomes ex-
actly renormalisation-scale independent: when we fol-
low the prescription given above, all the scale-dependent
logarithms present in Zt (explictly shown in (10)) and
Zu (hidden in the one-loop functions M

r and Jr in
(13)) are multiplied by terms of the same form, mqB0,
and thus cancel exactly. In the more usual treatment of
the tadpoles [13], mqB0 terms are replaced by physical
Goldstone masses in the one-loop generating functional
(see Sect. 8 in [13]). In this case, the cancellation of
the logarithms takes place only up to O(p4), and some
higher-order logarithmic pieces of Zt have no counterpart
in Zu.
We call the chiral expansion treated according to our

prescription a “bare expansion”, because we prefer keeping
the original couplings of the chiral Lagrangian to trading
them for physical masses and decay constants. We sum up
our method to obtain bare expansions of Green functions
in resummed χPT:

1. Consider a subset of observables suitable for a chiral
expansion, such as the linear space of connected QCD

correlators of axial/vector currents and their deriva-
tives away from kinematic singularities.

2. Extract the bare expansion of the observables using the
one-loop generating functional (9): in Zt, replace the
tadpole contributions by (14), and in Zu, use the physi-
cal masses for the functions J,K,L,M defined from the
one-loop scalar integral.

3. Use physical masses to reexpress scalar products of ex-
ternal momenta in terms of the Mandelstam variables.

4. Keep track of the higher-order contributions by intro-
ducing remainders, i.e. NNLO quantities that have an
unknown value but are assumed to be small enough for
the chiral series to converge.

5. Exploit algebraically the resulting relations, and never
trade the couplings of the chiral Lagrangian for observ-
ables, while neglecting higher-order terms.

The main differences from the usual treatment of three-
flavour chiral series consist in the choice of a particular sub-
set of observables, the distinction between physical meson
masses and their O(p2) truncated forms, and the algebraic
use of the chiral expansions, while keeping track of higher-
order terms explicitly.

2.3 Masses and decay constants of Goldstone bosons

The first example consists in pseudoscalar decay constants
and masses. The usual χPT expressions (Sect. 10 in [13])
become the following bare expansions in ReχPT (similar
expressions for η can be found in [16, 34]):

F 2π = F
2
πZ(3)+8(r+2)Y (3)M

2
π∆L4 (15)

+8Y (3)M2π∆L5+F
2
πeπ ,

F 2K = F
2
πZ(3)+8(r+2)Y (3)M

2
π∆L4 (16)

+4(r+1)Y (3)M2π∆L5+F
2
KeK ,

F 2πM
2
π = F

2
πM

2
πX(3)+16(r+2)Y

2(3)M4π∆L6 (17)

+16Y 2(3)M4π∆L8+F
2
πM

2
πdπ ,

F 2KM
2
K =

r+1

2
F 2πM

2
πX(3) (18)

+8(r+2)(r+1)Y 2(3)M4π∆L6

+4(r+1)2Y 2(3)M4π∆L8+F
2
KM

2
KdK .

We take as free parameters the Nf = 3 quark condensate
and the pseudoscalar decay constant expressed in phys-
ical units3, as well as their ratio and the quark mass
ratio:

X(3) =
2mΣ(3)

F 2πM
2
π

, Z(3) =
F 2(3)

F 2π
,

Y (3) =
X(3)

Z(3)
=
2mB0
M2π

. (19)

3 In this paper, we work in the isospin symmetry limit,
where mu =md =m and the electromagnetic interaction is ig-
nored. We take the following values for the masses and decay
constants: Fπ = 92.4 MeV, FK/Fπ = 1.22, Mπ = 139.6 MeV,
MK = 495.7 MeV,Mη = 547MeV.
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We have introduced the NNLO remainders dπ, eπ, dK and
eK , and the combinations of LECs and chiral logarithms:

∆L4 = L
r
4(µ)−

1

256π2
log
M2K
µ2

+
1

128π2
r

(r−1)(r+2)

×

{
log
M2K
M2π
+

(
1+
1

2r

)
log
M2η
M2π

}
, (20)

∆L5 = L
r
5(µ)−

1

256π2

[
log
M2K
µ2
+2 log

M2η
µ2

]

−
1

256π2(r−1)

(
3 log

M2η
M2K
+5 log

M2K
M2π

)
. (21)

∆L6 = L
r
6(µ)−

1

512π2

(
log
M2K
µ2
+
2

9
log
M2η
µ2

)

+
1

512π2
r

(r+2)(r−1)

(
3 log

M2K
M2π
+log

M2η
M2K

)
.

(22)

∆L8 = L
r
8(µ)−

1

512π2

[
log
M2K
µ2
+
2

3
log
M2η

µ2

]

−
1

512π2(r−1)

(
3 log

M2K
M2π
+log

M2η

M2K

)
. (23)

The values of the logarithms are only mildly dependent on
r; for r = 25,

∆L4 = L
r
4(Mρ)+0.51×10

−3 ,

∆L5 = L
r
5(Mρ)+0.67×10

−3 , (24)

∆L6 = L
r
6(Mρ)+0.26×10

−3 ,

∆L8 = L
r
8(Mρ)+0.20×10

−3 . (25)

Since Fπ, FK , Mπ and MK are accurately known, we
can use these expressions to eliminate some of the O(p4)
LECs in the chiral expansion of the other observables. This
is rather different from the usual χPT trading, since we
explicitly keep higher-order terms that would have been
neglected in the usual (perturbative) treatment of chiral
series.
From the masses and decay constants (15)–(18), we

get the equivalent set of equations providing some O(p4)
LECs in terms of physical masses and decay constants,
r,X(3), Y (3) and NNLO remainders:

Y 2(3)∆L6 =
1

16(r+2)

F 2π
M2π
[1− ε(r)−X(3)−d] ,

(26)

Y 2(3)∆L8 =
1

16

F 2π
M2π
[ε(r)+d′] , (27)

Y (3)∆L4 =
1

8(r+2)

F 2π
M2π
[1−η(r)−Z(3)− e] , (28)

Y (3)∆L5 =
1

8

F 2π
M2π
[η(r)+ e′] , (29)

with

ε(r) = 2
r2− r

r2−1
, η(r) =

2

r−1

(
F 2K
F 2π
−1

)
, (30)

and the following linear combinations of NNLO remainders
arise:

d=
r+1

r−1
dπ−

(
ε(r)+

2

r−1

)
dK , d

′ = d−dπ ,

(31)

e=
r+1

r−1
eπ−

(
η(r)+

2

r−1

)
eK , e

′ = e− eπ . (32)

The above identities are algebraically exact, but they
are useful only as long as the NNLO remainders are small.
In [16, 34], the size of the NNLO remainders was taken to
be

d, e=O(m2s)∼ 10% , d
′, e′ =O(mms)∼ 3% , (33)

with the rule of thumb that NNLO corrections of size
O(m2s) should not exceed (30%)

2 � 10% of the contribu-
tion to the observable while O(msm) terms would be less
than 30% ·10%� 3%. We will propose in the next section
a different but compatible way of dealing with this issue.
In (26)–(29), the presence of powers of Y (3), i.e., B0,

follows from the normalisation of the scalar and pseu-
doscalar sources in [13]: these powers arise only for O(p4)
LECs related to explicit chiral symmetry breaking (two
powers for L6, L7, L8, one for L4 andL5) and are absent for
LECs associated with purely derivative terms.

2.4 From bare expansions to ReχPT expansions

As shown in detail in [15], plugging (26)–(29) into the bare
expansions for other observables corresponds to resum-
ming the vacuum fluctuations encoded in L4 and L6. As
an illustration, we recall that we can exploit (26)–(29) to
relate Y (3) to the chiral couplings L4 and L6:

Y (3) =
2[1− ε(r)−d]

[1−η(r)− e]+
√
[1−η(r)− e]2+k[2∆L6−∆L4]

,

(34)

k = 32(r+2)
M2π
F 2π
[1− ε(r)−d] . (35)

If vacuum fluctuations are small, i.e. if ∆L6 and ∆L4
are almost vanishing, one can treat k× [2∆L6−∆L4] in
the denominator as a small perturbation and linearise the
equation as Y (3) = 1+O(p2). This corresponds to the
usual (iterative and perturbative) treatment of the chiral
series. However, the factor k is very large (k � 1900 for
r = 25) and values of ∆L6 and ∆L4 of a few 10

−3 suf-
fice to yield an important deviation of Y (3) from 1, while
the linear approximation becomes inaccurate. Similar rela-
tions exist between X(3) and ∆L6, and between Z(3) and
∆L4 [15].
Using (26)–(29), we obtain the one-loop expansions of

good observables in ReχPT, by using (26)–(29) and reex-
pressing F (3), mB0, Y (3)L4, Y (3)L5, Y (3)

2L6, Y (3)
2L8
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(and Y (3)2L7 through the η identities) in terms of the three
parameters of interest X(3), Z(3), r and NNLO remain-
ders. In the case of ππ and πK scatterings, only threeO(p4)
LECs (L1, L2 and L3) will remain. The square root in-
duced by equations like (34) is a non-perturbative feature
of our framework. It amounts to resumming (potentially)
large contributions of vacuum fluctuations, encoded in the
Zweig rule violating LECs L4 and L6. This feature, in con-
trast with the usual treatment of chiral series, has led us to
call our framework resummed chiral perturbation theory or
ReχPT.
There is a price to pay for this extension of the chi-

ral framework in the case of large fluctuations of ss̄ pairs
and the resulting competition between LO and NLO in
the chiral counting: some usual O(p4) relations cannot be
exploited anymore, because of our ignorance about their
convergence. For instance, the quark mass ratio r =ms/m
(m =mu =md) cannot be fixed fromM

2
K/M

2
π since we do

not control the convergence of its three-flavour chiral expan-
sion. r becomes a free parameter that can vary in the range

r1 = 2
FKMK

FπMπ
−1∼ 8≤ r ≤ r2 = 2

F 2KM
2
K

F 2πM
2
π

−1∼ 36 .

(36)

Similarly, one cannot determine LECs or combinations
of LECs through ratios of observables. For instance, one
should not use FK/Fπ to determine L5 at O(p

4), because
we do not know if the chiral expansion of FK/Fπ converges
at all. Finally, the agreement of the pseudoscalar spectrum
with the Gell-Mann–Okubo formula requires a fine tuning
of L7 (however, this fine tuning is also needed in the case
of a dominant Nf = 3 quark condensate and small vacuum
fluctuations [16]).

3 ππ and πK scattering amplitudes

In this section, we are applying the ReχPT framework to
two examples of Goldstone boson scatterings: ππ scatter-
ing, which probes the structure of QCD vacuum in the
Nf = 2 chiral limit, and πK scattering, which is linked with
the Nf = 3 chiral limit.

3.1 One-loop expression in ReχPT

In the isospin symmetry limit, the low-energy ππ scatter-
ing is described by a single Lorentz-invariant amplitude:

A(πa(p1)+π
b(p2)→ π

c(p3)+π
d(p4))

= δabδcdA(s, t, u)+ δacδbdA(t, u, s)+ δadδbcA(u, t, s) ,
(37)

where the usual Mandelstam variables are

s= (p1+p2)
2 , t= (p1−p3)

2 , u= (p1−p4)
2 , (38)

andA is symmetric under t↔ u exchange. In a similar way,
we consider low-energy πK scattering, which can be de-
composed into two amplitudes according to isospin in the

s-channel I = 3/2 and I = 1/2:

A(πa(p1)+K
i(p2)→ π

b(p3)+K
j(p4)) = F

I
πK(s, t, u) ,

(39)

from which one can define two amplitudes, respectively
even and odd under s↔ u exchange:

B(s, t, u) =
2

3
F
3/2
πK (s, t, u)+

1

3
F
1/2
πK (s, t, u) , (40)

C(s, t, u) =−
1

3
F
3/2
πK (s, t, u)+

1

3
F
1/2
πK (s, t, u) . (41)

In addition, crossing symmetry provides a relation between
the two amplitudes:

F
1/2
πK (s, t, u) =

3

2
F
3/2
πK (u, t, s)−

1

2
F
3/2
πK (s, t, u) . (42)

We can apply the prescriptions described in Sect. 2.2 to
determine the one-loop ReχPT expansions of A, B and C.
The relevant good observables, which can be derived from
Green functions of vector/axial currents, are F 4πA, FπFKF
and FπFKG.

1. We determine the one-loop bare expansions of these
quantities. This can be done using the generating func-
tional of Nf = 3 χPT [13], with the essential difference
that we keep the distinction between O(p2) truncated
masses and physical masses of the Goldstone bosons.
This was performed in the case of πK scattering in [35].
A similar work can be done in the case of ππ scatter-
ing. The corresponding (rather lengthy) expressions are
summarised in Appendix A.

2. We use (20)–(23) to reexpress the O(p4) LECs L4, L5,
L6 and L8 in terms of r,X(3) and Z(3), and the NNLO
remainders related to π and K masses and decay con-
stants. We denote with the superscript LO+NLO the
resulting expressions, which include the LO and NLO
expansions of the relevant good observables and resum
the vacuum fluctuations encoded in L4 and L6.

3. To obtain the ReχPT expansions of the ππ and πK
scattering amplitudes, we add to the resulting expres-
sions a polynomialmodeling higher-order contributions:

F 4πA
ReχPT = F 4πA

LO+NLO (43)

+F 2π(sA−M
2
π)a1+F

2
π(s− sA)a2

+(s− sA)
2a3

+[(t− tA)
2+(u−uA)

2]a4 ,

F 2πF
2
KB

ReχPT = F 2πF
2
KB

LO+NLO (44)

+FπFKtBb1+FπFK(t− tB)b2

+(t− tB)
2b3

+[(s− sB)
2+(u−uB)

2]b4 ,

F 2πF
2
KC

ReχPT = F 2πF
2
KC

LO+NLO (45)

+FπFK(s−u)c1+(t− tB)(s−u)c2 ,

where (sA, tA, uA), (sB, tB, uB), (sC , tC , uC) denote the
points around which we perform the expansion of the
NNLO polynomial. The first remainder is multiplied by
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a constant estimating roughly the value of the ampli-
tude at the expansion point (obtained from the LO chi-
ral expression). The other remainders are multiplied by
polynomials in the Mandelstam variables that vanish at
the expansion point and respect the crossing properties
of the amplitude.

For our purposes, we take

(sA, tA, uA) = (4/3M
2
π, 4/3M

2
π, 4/3M

2
π) , (46)

(sB, tB, uB) = (sC , tC , uC)

= (M2K+1/3M
2
π, 4/3M

2
π,M

2
K+1/3M

2
π) .
(47)

The remainders ai, bi, ci include only NNLO terms
or higher: we expect therefore these contributions to be
suppressed by 1/Λ4H, where ΛH is a typical hadronic
scale [36, 37]. On the other hand, the numerator may de-
pend on the remainder considered, but the contribution to
the polynomial must be of order O(p6) in the usual chiral
counting. This means that the remainders have a typical
size of order

a1, a2, b1, b2, c1 ∼
M4K
Λ4H
, a3, a4, b3, b4, c2 ∼

F 2πM
2
K

Λ4H
.

(48)

Remainders associated with higher-order polynomials
would be of order F 4π/Λ

4
H, much suppressed compared to

the terms considered here, and thus neglected in the follow-
ing analysis.
In the case of ππ scattering, we can exploit the be-

haviour of the amplitude in theNf = 2 chiral limit in order
to constrain the size of the NNLO remainders further. In-
deed, from Nf = 2 chiral perturbation theory, we know
that

F 4πA(s, t, u)−F
2
π(s−M

2
π) =O(ε

4) with ε2 ∼ p2 ∼m.
(49)

ε counts only powers ofm=mu =md but not those ofms.
If we compare this relation with F 4πA expressed in Nf = 3
ReχPT in (43) and (A.3), we see that the relation (49) im-
plies a constraint on the NNLO remainders: a1−eπ− (dπ−
eπ)/3/(sA/M

2
π − 1) and a2− eπ must be proportional to

m. Therefore, we can expect the remainders to exhibit the
typical sizes

a1− e−
d− e

3(sA/M2π−1)
, a2− e∼

M2πM
2
K

Λ4H
, (50)

b1, b2, c1 ∼
M4K
Λ4H
, a3, a4, b3, b4, c2 ∼

F 2πM
2
K

Λ4H
.

According to this discussion, we take the following
ranges for the direct remainders:

a1− e−
F 2πM

2
π

3(sA−M2π)
(d− e) , (51)

a2− e ∈

[
−
2M2πM

2
K

Λ4H
,
2M2πM

2
K

Λ4H

]
,

b1, b2, c1 ∈

[
−
M4K
Λ4H
,
M4K
Λ4H

]
,

a3, a4, b3, b4, c2 ∈

[
−
F 2πM

2
K

Λ4H
,
F 2πM

2
K

Λ4H

]
,

with ΛH = 0.85 GeV. This choice for the numerical value of
ΛH provides good agreement of our estimates with those
used in [1, 5, 16] for energy-independent quantities. In the
latter references, the NNLO remainders were taken of
order O(m2s) = (30%)

2 = 10% of the leading-order value,
unless they were suppressed by one power ofm and thus of
orderO(mms) = 30%×10%= 3%. According to this work,
the same remainders must remain respectively of order
M4K/Λ

4
H = 12% and 2M

2
πM

2
K/Λ

4
H = 2%. In addition, one

can check that the definition and size of the remainders
given in this section can be applied to the two-point corre-
lators related to F 2P and F

2
πM

2
π with an expansion around

the point of vanishing transfer momentum, leading to re-
mainders identical to those defined in Sect. 2.3.

3.2 Roy and Roy–Steiner equations

The above theoretical expressions for low-energy ππ and
πK scattering must be compared to experimental informa-
tion in order to extract the parameters of three-flavour chi-
ral symmetry breaking. Fortunately, dispersion relations
provide an appropriate framework to analyse the experi-
mental data and extract the low-energy behaviour of the
amplitude, through the Roy and Roy–Steiner equations.
In [4], the Roy equations were derived and solved with

experimental input on high-energy ππ scattering. The so-
lutions were parametrised in terms of the two scattering
lengths a00 and a

2
0. In [4, 5], these solutions, and some of

their extensions, were exploited together with recent data
on ππ scattering in order to determine the low-energy
structure of the amplitude with the best accuracy. Refer-
ence [6] proposed to combine K�4 data on δ

0
0 − δ

1
1 supple-

mented with a theoretical constraint from the scalar radius
of the pion. This constraint was assessed critically in [5],
where it was proposed to avoid any reference to the scalar
radius of the pion and to rely only on the experimental
data, namely K�4 data supplemented with I = 2 data. We
follow the latter approach and take the results of the so-
called “Global” fit, (12) in [5], for the ππ scattering data.
In [14], the Roy–Steiner equations were investigated

to study the πK scattering amplitude. In spite of recent
progress in τ →Kπντ andD→Kπeνe decays, low-energy
data on πK phase shifts are still lacking. However, the
dispersive analysis of the data in the intermediate region
turned out to provide rather tight constrains on the low-
energy πK amplitude. We use the results of [14] for πK
scattering.
It is a straightforward, if tedious, exercise, to exploit the

dispersive representations of the amplitudes A, B and C
found in Sect. 3 of [4] and in Sect. 2 of [14], and to compute
them in subthreshold regions, where none of the disper-
sion integrals exhibit singularities. We checked in particu-
lar that our representation of the low-energy πK amplitude
was in good numerical agreement with the subthreshold
expansion presented in Sect. 6.3 in [14].
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We define the subthreshold region of interest for ππ
scattering as a triangle in the Mandelstam plane delimited
by points with (s, t, u):

(2M2π,M
2
π ,M

2
π) , (M

2
π/2, 3/2M

2
π, 3/2M

2
π) ,

(M2π/2, 3M
2
π,M

2
π/2) , (52)

taking into account the symmetry of the amplitude under
t–u exchange. Similarly, we define for πK scattering a tri-
angle in the Mandelstam plane with

(M2K , 2M
2
π,M

2
K) , (M

2
K , 0,M

2
K+2M

2
π) ,

(M2K+M
2
π, 0,M

2
K+M

2
π) , (53)

exploiting the symmetry or antisymmetry under s–u ex-
change. In each triangle, we defined 15 points regularly
spaced where we compute the scattering amplitudes. Some
aspects of the computation, and of the correlations among
the points, are covered in Appendix B.

4 Matching in a frequentist approach

We must match the chiral expansions of the scattering am-
plitudes with the experimental values described in the pre-
vious section. We perform this matching in a frequentist
approach inspired by the Rfit method [17].

4.1 Likelihood

We collect in a vector V our 3n observables:

V T = [A(s1, t1) . . .A(sn, tn), B(s
′
1, t
′
1) . . . B(s

′
n, t
′
n),

C(s′′1 , t
′′
1) . . . C(s

′′
n, t
′′
n)] . (54)

Since we use the masses and decay constant identities
for pions and kaons to reexpress the O(p4) LECs in terms
of F 2P and F

2
PM

2
P through (26)-(29), our set of theoretical

parameters is

Parameters : r,X(3), Z(3), Lr1, L
r
2, L3 , (55)

Direct remainders : a1, a2, a3, a4, b1, b2, b3, b4, c1, c2 ,
(56)

Indirect remainders : d, d′, e, e′, dX , dZ . (57)

We have separated the direct remainders, attached to the
bare expansions of the observables, and the indirect re-
mainders, arising through the reexpression of O(p4) LECs
thanks to mass and decay constant equalities. The latter
include also the remainders dX and dZ , whose expressions
will be given in Sect. 4.2 and which are required to express
the paramagnetic constraints onX and Z, (5).
We construct the experimental likelihood Lexp, i.e. the

probability of observing the data for a given choice of the
theoretical parameters Tn:

Lexp(Tn) = P (data|Tn)

∝ exp

(
−
1

2
(Vth−Vexp)

TC−1(Vth−Vexp)

)
/
√
detC .

(58)

To avoid a proliferation of (purely numerical) normalisa-
tion factors of no significance for our discussion, we use
the sign ∝ meaning “proportional to”. C is the covariance
matrix between the experimental values Vexp computed
through (B.2), whereas Vth denotes the theoretical values
computed with the particular choice of Tn. Since we expect
strong correlations among the parameters, the covariance
matrix must be treated with some care, as described in Ap-
pendix C.
The theoretical likelihood Lth(Tn) describes our cur-

rent knowledge on the parameters of the theory. In agree-
ment with the Rfit prescription [17], we consider that
Lth(Tn) = 1 if each theoretical parameter lies within its al-
lowed range described in the next section; otherwise the
likelihood vanishes.

4.2 Constraints on the theoretical parameters

To build the theoretical likelihood, we impose a list of con-
straints on the theoretical parameters. Some constraints
are fairly simple.

– We take the following range for the ratio of quark
masses r:

r1 ≤ r ≤ r2 ,

r1 = 2
FKMK

FπMπ
−1 , r2 = 2

(
FKMK

FπMπ

)2
−1 .

(59)

– Vacuum stability yields constraints on theNf = 3 chiral
order parameters:

X(3)≥ 0 , Z(3)≥ 0 . (60)

– We allow the three O(p4) LECs Lr1(Mρ), L
r
2(Mρ), L3

to be in the range [−F 2π/Λ
2
H, F

2
π/Λ

2
H], i.e. lower than

12×10−3 in absolute value.
– The direct remainders are constrained to remain in the
range given in (51).
– The indirect remainders must lie in the ranges dis-
cussed in Sect. 3.1:

d′, e′, dX , eX ∈

[
−
2M2πM

2
K

Λ4H
,
2M2πM

2
K

Λ4H

]
,

d, e ∈

[
−
M4K
Λ4H
,
M4K
Λ4H

]
, (61)

i.e. 3% for the first and 12% for the latter.

A second set of constraints translates into bounds on
combinations of the remainders.

– Vacuum stability for Nf = 2 chiral order parameters
yields

X(2)≥ 0↔ d≤ dmax ≡ 1− ε(r)−Y (3)
2×LX ,

(62)

Z(2)≥ 0↔ e≤ emax ≡ 1−η(r)−Y (3)×LZ , (63)

where LX and LZ are small combinations of chiral log-
arithms denoted f1 and g1 in [15, 16]. These chiral log-
arithms involveMK andMη in the Nf = 2 chiral limit,
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which can be computed through the iterative method
presented in [15].
– The paramagnetic inequalities (5) lead to

X(3)≤X(2)↔ dX ≥ dX,min ≡ 1−
dmax−d

X(3)(1−d)
,

(64)

Z(3)≤ Z(2)↔ eZ ≥ eZ,min ≡ 1−
emax− e

Z(3)(1− e)
.

(65)

– The ratio of order parameters Y (3) = X(3)/Z(3) =
2mB0/M

2
π is bound [15]:

Y (3)≤ Y max = 2
1− ε(r)−d

1−η(r)− e
. (66)

4.3 Computation of the confidence level

Contrary to [16], which adopted a Bayesian approach to
deal with ππ scattering, we follow the (frequentist) Rfit
procedure advocated in [17] and used for the analysis of
the CKM matrix in [38]. From the theoretical and experi-
mental likelihoods we define the function of the theoretical
parameters

χ2(Tn) =−2 logL(Tn) =−2 log[Lth(Tn)Lexp(Tn)] . (67)

We start by computing the absolute minimum of χ2,
letting all theoretical parameters vary freely; we denote
this value by χ2min;all. Then we focus on one particular the-
oretical parameter Ti. We assume that it reaches a particu-
lar value ti and compute the minimum:

χ2min;not i(ti) = min{χ
2(Tn);Ti = ti} . (68)

Then we compute the corresponding confidence level:

P(ti) = Prob[χ
2
min;not i(ti)−χ

2
min;all, 1] , (69)

where Prob(c2, Ndof) is the routine from the CERN library
providing the probability that a random variable having
a χ2-distribution with Ndof degrees of freedom assumes
a value that is larger than c2. Admittedly, we are sim-
plifying the statistical problem at hand, since we assume
that the function χ2(ti) has indeed a χ

2-distribution. This
should be a correct assumption if the experimental com-
ponent is free from non-Gaussian contributions and incon-
sistent measurements [17].
This method provides an upper bound on the marginal

confidence level (CL) of Ti = ti for the optimal set of the-
oretical parameters: the CL value is the probability that
a new series of measurements will agree with the most
favourable set of theoretical parameters (at Ti = ti) in
a worse way than the experimental results actually used
in the analysis [18, 19]. The value of ti for which P(ti) is
maximal provides an estimator of Ti: in the ideal case of
very accurate data in excellent agreement with theoretical

expectations, P(ti) should exhibit a sharp peak indicating
the “true” value of Ti.
We have implemented this procedure in a program. Be-

fore turning to Goldstone boson scattering, we checked
the validity of our programs using “fake” observables. We
designed observables with very simple chiral representa-
tions (linear or quadratic dependence on r,X(3), Z(3))
and we simulated a set of data with a certain choice
of r,X(3), Z(3), adding some random noise. We plugged
these “data” into our program and computed the confi-
dence level for each theoretical parameter, r, X(3) and
Z(3).When the chiral representation of the observables de-
pended on this parameter, we obtained a function P(ti)
showing a peak in agreement with the value used to simu-
late the data (i.e., we recovered the information contained
in the data). When the chiral series for the observables had
no dependence on the parameter, the function P(ti) was
flat (i.e., we did not extract information absent from the
data).

5 Results

In this section, we discuss the results obtained by matching
the one-loop ReχPT expansions and the dispersive results
on ππ and πK scattering, relying on the frequentist ap-
proach described in the previous section.

5.1 CL for order parameters and related quantities

We have plotted the confidence level of the order parame-
tersX(3), Y (3) and Z(3), as well as the quark mass ratio r.
In each case, the dashed line indicates the results obtained
from ππ scattering, the dotted line from πK scattering,
while the solid line stems from the combination of both
pieces of information.
If we include ππ scattering only, we see that small

values of r, below 13, are disfavoured (this is also the case
for large values of r above 25, but not at a significant level):
r ≥ 12 at 68% CL. The CL for X(3) is flat up to 0.85,
where it suddenly drops, as well as that for Z(3) up to 0.95.
Y (3), which is related to B0 and measures the fraction of
the LO contribution toM2π , is essentially not constrained,
even though values close to 2 are slightly disfavoured. If
we consider πK scattering only, r and Y (3) are essentially
not constrained. Flat CLs are observed for X(3) and Z(3),
with a steep decrease respectively for 0.83 and 1. Finally, if
we combine both pieces of information, intermediate values
of r are clearly favoured (between 20 and 25), in agree-
ment with the information contained in ππ and πK scat-
tering data. Low values of X(3) and Y (3) are preferred,
whereas the CL for Z(3) peaks around 0.8. We see that
the combination of the two data sets provides more strin-
gent constraints on the various theoretical parameters of
interest (this issue is discussed in more detail in Appendix
D), even though these results have still a limited statistical
significance.
We recall that the frequentist method given here pro-

vides an upper bound on the confidence level (CL) for the
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optimal set of theoretical parameters assuming Ti = ti [17].
In the ideal case, we would expect the CL to peak in a very
limited interval of ti, providing the “true” value of the cor-
responding theoretical parameter. In practice, we see that
the chosen set of data is not accurate enough to provide
very stringent constraints on the theoretical parameters.
In such a case, the CL profiles can be exploited to extract
a confidence interval, say at 68% CL, i.e. a range of values
so that the probability that the range contains the true
value of the parameter is 68%. This can be obtained by de-
termining the region of parameter space in which the CL
curve lies above 0.32 [18, 19].
From the CL profiles obtained from the combined an-

alysis of ππ and πK scattering, we obtain the following
confidence intervals at 68% CL:

r ≥ 14.8 , X(3)≤ 0.83 , (70)

Y (3)≤ 1.1 , 0.18≤ Z(3)≤ 1 [68%CL] .

The values for L1, L2 and L3 can also be determined in
each case, and the corresponding confidence intervals are
collected in Table 1.
As a cross-check, we have also studied the case where

the higher-order direct remainders are removed, i.e. (43)–
(45) are set to zero. The corresponding CLs are sharper,
but very similar in shape to those presented here. There-
fore, the polynomial terms modeling higher order contribu-
tions tend to push CLs towards 1, but the qualitative fea-
tures shown in Figs. 1 and 2 stem mainly from the match-
ing of LO and NLO terms of the ReχPT expansion to
experimental information.
The scenario mildly favoured from the matching of both

ππ and πK scatterings would correspond to a value of
r =ms/m quite close to the canonical value r = 25. How-
ever, we emphasise that this agreement is rather coinciden-
tal: the latter value comes from the (perturbative) reex-
pression ofM2K/M

2
π in terms of r, assuming that the chiral

expansions of the two squared masses converge quickly.
This assumption is not supported by our results for the
quark condensate (or X), which exhibits some suppres-
sion when one moves from the Nf = 2 chiral limit to the
Nf = 3 one, i.e., whenms decreases from its physical value
down to zero. On the other hand, the pion decay constant
(or Z) seems quite stable from Nf = 2 to Nf = 3; see (6)–
(7). If our results are confirmed by further experimental
data, we expect the usual treatment of the Nf = 3 chiral

Table 1. Derivative chiral couplings Lr1,2,3(µ) at µ= 0.77 GeV obtained in our approach. The confi-
dence intervals correspond to a 68% CL. “nd” means that the corresponding CL is flat over the whole
range imposed by the theoretical likelihood, and thus the coupling is not determined. Also shown are
results obtained assuming small vacuum fluctuations of ss̄ pairs: [14] analysed subthreshold πK pa-
rameters from the Roy–Steiner equations at order p4 (col. 5), whereas [43–45] performed fits to the
Kl4 form factors using chiral expansions at order p

4 (col. 6) as well as p6 (col. 7)

ππ data πK data ππ and πK Roy–Steiner O(p4) Kl4, O(p
4) Kl4, O(p

6)

103 L1 [−8.1, 5.6] [−4.4, 4.1] [−2.1, 2.2] 1.05±0.12 0.46±0.24 0.53±0.25
103 L2 [0.2, 2.4] nd [0, 3.0] 1.32±0.03 1.49±0.23 0.71±0.27
103 L3 nd nd [−7.8, 3.4] −4.53±0.14 −3.18±0.85 −2.72±1.12

Fig. 1. CL profiles for r =ms/m (top) and X(3) = 2mΣ(3)/

(F 2πM
2
π) (bottom). The dashed line corresponds to experimen-

tal information on ππ scattering, the dotted line to πK scatter-
ing, and the solid line to the combination of both sets. The two
horizontal lines indicate the confidence intervals at 68 and 95%
CL

expansions to yield unstable expansions, with significant
numerical competition among terms of different orders in
the chiral counting.
Such a situation is reminiscent of a scenario proposed

some time ago concerning the Nf -dependence of the chiral
structure of QCDvacuum [1, 39, 40]. The quark condensate
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Fig. 2. CL profiles for Y (3) = 2mB0/M
2
π (top) and Z(3) =

F 20 /F
2
π (bottom). The dashed line corresponds to experimental

information on ππ scattering, the dotted line to πK scattering,
and the solid line to the combination of both sets. The two ho-
rizontal lines indicate the confidence intervals at 68 and 95%
CL

Σ(Nf ) and the decay constant F (Nf ) depend on the way
small eigenvalues of the Dirac operator accumulate around
zero in the thermodynamic limit. It was conjectured that
the two order parameters could decrease at a different rate
when the number of massless flavours Nf increases: the
quark condensate would vanish first, followed later by the
vanishing of the decay constant related to the restoration
of chiral symmetry. The trend of our results for Nf = 3
order parameters, compared to Nf = 2 results, could fit
such a scenario, but more data should be included in the
analysis before we reach statistically significant CLs for the
various theoretical parameters analysed here.

5.2 Comparison with some earlier works

5.2.1 ππ scattering

Forππ scattering, it is interesting to compare our results
with [16], which shares some ideas and issues with the

present paper. This work differs on three points from [16]:
we include πK scattering in our analysis, we choose as ob-
servables the scattering amplitudes in subthreshold regions
rather than the subtraction constants involved in dispersive
representations, and we perform the statistical analysis in
a frequentist framework rather than in a Bayesian one.
We observe the same qualitative features in both ana-

lyses. As expected, low values of r are strongly disfavoured.
Indeed, the analysis of currently available data on ππ scat-
tering [5] provides a value ofX(2); see (6). As illustrated in
Fig. 1 of [1],X(2) is related to r through the pion and kaon
mass and decay constant identities, (15)–(18): the value of
X(2) from [5] favours the same range for the quark mass
ratio as the upper plot in Fig. 1. On the other hand, we find
that X(3) and Z(3) are only constrained through an up-
per bound, in numerical agreement with the paramagnetic
inequalitiesX(3)≤X(2) and Z(3)≤ Z(2).
This agreement is particularly gratifying since the

method of analysis of the present work does not require
computing any Nf = 2 chiral order parameters or related
subtraction constants like [5, 16]. Moreover, one can see an
improvement compared to the latter references, thanks to
the frequentist approach chosen here. In [16], it was difficult
todisentangle the effect of thedata fromthatof theBayesian
priors inside a posterior PDF: the so-called “reference pro-
files” (PDFs from priors but no data) had to be compared
to the posteriorPDFs (PDFs frompriors and data) to judge
the impact of ππ data. In the present paper, this intricate
procedure and the arbitrariness induced by Bayesian priors
are avoided: it is clearly seen that ππ data constrain X(3)
and Z(3) only through the values ofX(2) and Z(2) and the
correspondingparamagnetic upper bounds.

5.2.2 πK scattering

For πK scattering, we can compare our results with [14],
where the solutions of the Roy–Steiner dispersion relations
were used to reconstruct the amplitudes in the subthresh-
old region. These amplitudes were expanded around the
point s= u, t= 0, and the coefficients of the polynomials,
C+ij and C

−
ij , were matched with their NLO chiral expan-

sions in order to determine some O(p4) LECs. This led to
the determination of L1, L2 and L3 recalled in the previ-
ous section, and to a value of L4 suggesting a significant
suppression of Z(3). The value of L6, though affected by
large uncertainties, indicated also a suppression of X(3),
stronger than that of Z(3):

[14] : Lr4(Mρ) = (0.53±0.39)×10
−3 , (71)

[2Lr6+L
r
8](Mρ) = (3.66±1.52)×10

−3 .

Using (34) and the other results of Sect. 3.1 in [16], and tak-
ing Lr8(Mρ) = (0.9±0.3)×10

−3 [13] we can convert these
results into the parameters of interest: following these re-
sults, X(3) would be between 0.15 and 0.41, Z(3) between
0.14 and 0.92, and Y (3) between 0.44 and 1.05. Obviously,
the low values of X(3) and Z(3) indicate that the values
obtained in [14], relying on the assumption of small vac-
uum fluctuations and on X(3) and Z(3) close to 1, should
be reassessed relaxing this hypothesis.
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If our results for the combined ππ and πK data point
towards a similar pattern, our analysis of the πK data
alone provides weaker constraints than that of [14]. At
least two different reasons lead us to weaker constraints.
First, we have explicitly take into account the presence of
NNLO contributions that were neglected in the O(p4) an-
alysis of [14] and that may affect significantly the energy-
dependent part of the amplitudes. Secondly, the analysis
in [14] assumes explicitly the smallness of vacuum fluctua-
tions: once we drop this assumption, a smaller value of L4
(and thus a value of Z(3) close to 1) can be compensated by
the variation of other parameters, such as the quark mass
ratio r. These two phenomena may explain the weaker con-
straints observed in our analysis.

5.2.3 Combined analyses

For the combined analysis of ππ and πK scatterings, we
can compare our results with [28, 29]. The authors of these
references took an approach different from ours, computing
NNLO chiral expansions to ππ and πK scattering ampli-
tudes, and matching with results on ππ scattering (scat-
tering lengths) and πK scattering (scattering lengths and
subthreshold expansion coefficients), supplemented with
information on K�4 form factors. In agreement with the
one-loop framework of [13], these two-loop computations
assume a numerical dominance of LO contributions and
a quick convergence of Nf = 3 chiral expansions.
In previous studies in this NNLO framework [30], the

authors performed fits to pseudoscalar masses and decay
constants [31, 32], K�3 decays [33], and scalar form fac-
tors [27]. In each case, the values of the Zweig rule sup-
pressedO(p4) LECs L4 and L6 had to be fixed by hand: fits
of similarity quality could be obtained with values of these
two constants corresponding either to small or large vac-
uum fluctuations of ss̄ pairs. For scalar form factors, values
of L4 and L6 larger than conventionally assumed led to an
improvement in the convergence of observables (fits A, B
and C compared to fit 10 in Table 2 of [27]).
In the case of [28, 29], the authors analysed ππ and πK

scattering amplitudes in the same NNLO framework. The
fits were not able to reproduce some observables, in par-
ticular among πK subthreshold coefficients. A particular
subset of subthreshold coefficients and scattering lengths
led to Lr4(Mρ) � 0.2×10

−3 and L6(Mρ) negative. Such
values correspond to F0 rather small compared to Fπ , with
a rather unsatisfying convergence of some observables: for
instance, the pion mass exhibits instabilities in its chiral
expansion [30]. It proves difficult to draw a fully consistent
picture for the structure of the QCD vacuum in theNf = 3
chiral limit from these results.
Some of the problems encountered in [28, 29] were re-

assessed in [41]; in particular the determination of NNLO
LECs. Following [42], the many O(p6) LECs are often es-
timated using resonance saturation. In [41], the specific
resonance Lagrangian used in [28, 29] was shown to provide
values for vector-dominated LECs rather far away from the
expectations based on πK dispersion relations, but other
resonance Lagrangians failed also to repro duce the same
results. Therefore, one may wonder whether the problems

of convergence seen in [30] could stem from two different
sources. The first one consists in the use of resonance satu-
ration to fix O(p6) counterterms, which is already delicate
in vector channels and certainly questionable in the scalar
sector. The second one is the observed slow convergence of
chiral expansions, which contradicts the starting assump-
tions of the NNLO analysis. A comparison of ReχPT ex-
pansions with the NNLO formulae in [28, 29] should high-
light how large values of the O(p4) LECs L4 and L6 might
destabilise NNLO expansions and how the explicit resum-
mation of vacuum fluctuations of our work echoes in the
perturbative expansion adopted in the latter references.

5.2.4 Lattice

Other interesting developments are awaited from lattice
simulations. The effects presented in this paper are re-
lated to strange sea quarks, and they can be tackled only
with (2+1) dynamical fermions with light masses. Unfor-
tunately, fermions with interesting chiral properties (Wil-
son, Ginsparg–Wilson, twisted mass) [9–12] are still with
at most two dynamical flavours. On the other hand, stag-
gered fermions [46] have been exploited for simulations
with (2+1) dynamical quarks, but their use is under much
debate [47–51]. The presence of the fourth root of the
fermion determinant yields non-localities, which are not
understood yet: at best, recovering QCD requires taking
the various continuum limits in a very careful way.
A staggered version of chiral perturbation theory [52]

has been developed to extract chiral LECs from the pseu-
doscalar spectrum. It attempts to reproduce the fourth-
rooting of the fermion determinant and includes many
other effects (lattice spacing, finite-volume effects, taste-
breaking terms), leading to a number of LECs much larger
than in continuum unstaggered χPT. The hope is that the
LECs common to both theories should be identical be-
cause QCD ought to be recovered as a limit of lattice QCD
with fourth-rooted staggered fermions. In practice [46],
chiral fits to staggered data on the pseudoscalar spectrum
must include a large number of parameters and thus are
highly non-trivial. Mixed actions with domain-wall valence
quarks and staggered sea quarks have also been considered
to reduce the number of LECs involved in the associated
chiral Lagrangian at the price of losing unitarity in add-
ition to locality [53–55].
Bearing all these remarks in mind, we can focus on the

following staggered values:

[46] : r = 27.2(4) , (72)

[2Lr6−L
r
4](Mη) = 0.5(1)(2)×10

−3 ,

Lr4(Mη) = 0.1(2)(2)×10
−3 .

Combining the errors in quadrature and using (34) and
the other results of Sect. 3.1 in [16], we can convert these
results into the parameters of interest: following these lat-
tice results, X(3) would be between 0.55 and 0.95, Z(3)
between 0.57 and 1.04, and Y (3) between 0.67 and 1.08;
values that are not in striking disagreement with our re-
sults. Obviously, if the values of X(3) and Z(3) are on the
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smaller end of these ranges, i.e., if L6 and L4 are in the
upper end of the range in [46], the assumption of small
vacuum fluctuations is not correct, and the extraction of
the LECs by means of staggered χPT should be reassessed
more carefully.
As an alternative to such tests, which rely strongly on

the usual treatment of chiral series, we proposed a lattice
test of the size of ss̄ vacuum fluctuations based on ReχPT
in [56]. We considered simulations with (2+1) flavours,
with a strange quark mass at its physical value, but the two
u, d light quarks with identical masses m̃ larger than their
physical values m and smaller than ms. The larger values
of the u, dmasses enhanced the impact of the vacuum fluc-
tuations encoded in L4 and L6 on observables such as the
masses and decay constants of pions and kaons. This led to
a difference in the curvatures of F 2P and F

2
PM

2
P (P = π,K)

as functions of q = m̃/ms, depending on the size of X(3)
andZ(3). The effect was less pronounced in the case ofM2P ,
obtained as the ratio of the two former observables, leading
to a fairly linear behaviour as a function of q.
In the same reference, we proposed a test of the size of

X(3) on the lattice from the pion and kaon spectrum, by
considering the dependence on q of the ratios:

Rπ =
F̃ 2πM̃

2
π

qF 2πM
2
π

, RK =
2F̃ 2KM̃

2
K

(q+1)F 2KM
2
K

, (73)

where F̃ 2π and M̃
2
π denote quantities computed on the lat-

tice with u, d quarks of mass m̃. We assessed the leading
finite-volume effects to conclude that large volumes (of
sides around 2.5 fm) were required to tame these effects.
In any case, more dedicated studies on (2+1) fermions

with different actions, lattice spacings and volumes will be
required in order to draw definite conclusions from lattice
simulations on the structure of the Nf = 3 chiral vacuum.

6 Conclusion

Vacuum fluctuations of ss̄ pairs can induce significant dif-
ferences in the pattern of chiral symmetry breaking be-
tween the two conceivable chiral limits: Nf = 2 (mu =
md = 0 but ms kept at its physical values) and Nf = 3
(mu = md = ms = 0). These fluctuations might lead to
a paramagnetic suppression of the two main chiral order
parameters in theNf = 3 chiral limit, the quark condensate
and the pseudoscalar decay constant, compared to their
Nf = 2 counterparts [1, 15]. Then, we would observe nu-
merical competition between leading-order (LO) and next-
to-leading-order (NLO) contributions in the chiral series,
through the two O(p4) LECs L4 and L6 related to the vi-
olation of the Zweig rule in the scalar sector.
In order to shed light on the size of these fluctuations,

we developed and modified the framework sketched in [16]:
resummed chiral perturbation theory or ReχPT. We ap-
plied it to our current knowledge of low-energy ππ and
πK scatterings. First, we recalled and detailed our treat-
ment of one-loop chiral series in the case of large vacuum
fluctuations: only a subset of “good” observables is as-
sumed to converge globally (so that NNLO contributions

are much smaller than the sum of LO and NLO contri-
butions), the chiral series must be treated in a particular
way to derive bare expansions and resum the effects of
vacuum fluctuations, while NNLO remainders are intro-
duced to keep track of higher-order contributions. Then, in
this resummed framework, called ReχPT, we determined
the one-loop expansions for ππ and πK scattering am-
plitudes. Relying on our current experimental knowledge,
we exploited solutions of the Roy and Roy–Steiner equa-
tions within dispersive representations to determine the
values of the amplitudes in subthreshold (unphysical) re-
gions where chiral expansions should converge.
The two representations of the scattering amplitudes

were matched in a frequentist approach (inspired by
Rfit [17]). The output of this analysis are marginal CL
curves, providing an upper bound on the confidence level
(CL) for the optimal set of theoretical parameters at fixed
Ti = ti: the CL value is the probability that a new series
of measurements will agree with the most favourable set of
theoretical parameters (at Ti = ti) in a worse way than the
experimental results actually used in the analysis [18, 19].
Unfortunately, the marginal CL profiles do not provide

sharp peaks and thus stringent constraints on the theor-
etical parameters at a statistically significant level. How-
ever, our results point towards some favoured regions of
parameter space; see Figs. 1 and 2. If only ππ scattering is
included, the results obtained in earlier works [16] are re-
covered: small values of r are disfavoured, whereas X(3)
andZ(3) are only constrained to remain below theirNf = 2
counterpart due to paramagnetic inequalities; see (5). πK
scattering alone does not constrain strongly the various
theoretical parameters, apart from setting bounds onX(3)
andZ(3). The combination of the two pieces of information
proves more interesting: the CL profile for r peaks around
23, low values of X(3) are preferred, whereas the CL for
Z(3) exhibits a broad peak around 0.8.
From the CL curves obtained from the combined an-

alysis of ππ and πK scattering, we obtain the following
confidence intervals at 68% CL:

r ≥ 14.8 , X(3)≤ 0.83 , (74)

Y (3)≤ 1.1 , 0.18≤ Z(3)≤ 1 [68%CL] ,

corresponding to the regions of parameter space where the
marginal CL profiles lie above 0.32 [18, 19].
The pattern of marginal CL profiles is consistent with

the scenario of significant vacuum fluctuations of ss̄ pairs.
It reminds one of the interesting possibility that the de-
crease of order parameters from Nf = 2 massless flavours
to Nf = 3 is steeper in the case of the pseudoscalar decay
constant F 2(Nf ) than for the quark condensate Σ(Nf ).
The present analysis constitutes a first attempt to ana-

lyse data with a limited statistical significance, and it re-
lies strongly on the experimental results gathered on ππ
and πK scatterings. For ππ scattering, new results are ex-
pected from the NA48 Collaboration on K�4 decays [8]
and on the cusp in K → 3π [57–61]. For πK scattering,
we hope to obtain more precise information from D�4 de-
cays [62–65] and τ →Kπντ decays [66–69]. In addition,
lattice studies could soon provide results for three light
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flavours with well-controlled actions in the chiral regime.
These new high-accuracy data should shed somemore light
on the chiral structure of QCD vacuum and, in particular,
on its dependence on the number of massless flavours and
the role played by the vacuum fluctuations of ss̄ pairs.
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Appendix A: One-loop bare expansions
of scattering amplitudes

A.1 ππ scattering amplitude

Following the prescription in Sect. 2.2 we obtain, for in-
stance from [23],

F 4πAππ =
2

3
mB0F

2
0 +F

2
0

(
s−
4

3
M2π

)
(A.1)

+µπF
2
0

[
−4

(
s−
4

3
M2π

)
−2B0m

]

+µKF
2
0

[
−2

(
s−
4

3
M2π

)
−
4

3
B0m

]

−
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9
µηF

2
0B0m

+16B0mL
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[(
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4

3
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4

3
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+32B0mL
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3
B20m
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256

3
B20m

2Lr8
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r
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(
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)2
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(
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)2]

+
1
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[(
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)2
+8B0m

(
s−2M2π

)
+12B20m

2
]

×Jrππ(s)

+
1

4

[(
t−2M2π

)2
Jrππ(t)+

(
u−2M2π

)2
Jrππ(u)

]

+
1

8

[(
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)2
+8B0m

(
s−2M2π
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×JrKK(s)+
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9
B20m
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1

2
[(s−u)t (2M rππ+M

r
KK) (t)

+ (s− t)u (2M rππ+M
r
KK) (u)] ,

where
◦

M2P denotes the leading-order pseudoscalar squared
mass of the Goldstone boson P and the tadpole logarithm

is

µP =

◦

M2P
32π2F 20

log
M2P
µ2
. (A.2)

We recast the amplitude in the following form:

F 4πAππ =A+

(
s−
4

3
M2π

)
×B (A.3)

+4 (2Lr1+L3)
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whereA and B are scale-dependent combinations of LECs:

3×A= 2mB0F
2
0 +64m

2B20 [(r+8)L
r
6+4L

r
8] (A.4)

−32mB0M
2
π [2L
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[
3 log

M2π
µ2
+(r+1) log
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−
1

32π2
2mB0

[
4 log

M2π
µ2
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M2K
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]
,

which correspond to F 2πM
2
πα
r
ππ/3 and B to F

2
πβ
r
ππ, respec-

tively, as defined in [23].
In the above expressions, we have replaced the bare

masses by the physical masses in the (tadpole) logs and
in the loop functions Jr and M r. One can check explic-
itly that there is no µ-dependence in the above expres-
sion of the amplitude: for each polynomial in s−2M2π, t−
2M2π, u−2M

2
π, the dependence of the LECs on the renor-

malisation scale µ cancels that of Jr andM r.

A.2 πK scattering amplitude

We recall the expression obtained in [35] for the I = 3/2
amplitude:

F 2πF
2
KF

3/2
πK

=
F 20
6

[
2M2π+2M

2
K+

◦

M2π +
◦

M2K −3s
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This expression is renormalisation-scale independent. In
both ππ and πK scattering, the one-loop expressions ob-
tained with the usual treatment of three-flavour χPT [13]
are recovered if we treat chiral series perturbatively and
neglect the (potentially large) difference between the trun-
cated O(p2) expressions and the physical values of the
pseudoscalar masses and decay constants.

Appendix B: Computation of the amplitudes

The amplitudes are smooth functions of the various ex-
perimental inputs. This means in particular that there will
be significant correlations among the values of the same
scattering amplitude at different points in the Mandelstam
plane. We compute these correlations according to the fol-
lowing procedure. Let us call ak (k = 1 . . . n) the parame-
ters describing the variations of the experimental inputs.
To each of these parameters is attached an uncertainty
(σk), and the correlations among them are encoded in a co-
variance matrix Dkl, or equivalently, a reduced covariance
matrix Hkl =Dkl/(σkσl). We compute the mean value mi
of the observables xi’s by setting all the parameters ak to
their central value āk: mi ≡ xi(āk). Then, we vary the pa-
rameters one by one (the others being kept at their central
value), and we compute each time

∆ki ≡ xi

(
āk+

σk

ρ

)
−mi =

σk

ρ
×
∂xi

∂ak
+ . . . , (B.1)

where ρ is a large parameter (around 10), and the ellip-
sis denotes higher derivatives. Once this is done for all
the parameters, we compute the covariance matrix for the
observables:

Vij ≡ ρ
2
∑

kl

∆ki∆
l
jHkl =

∑

kl

∂xi

∂ak

∂xj

∂al
Dkl+ . . . (B.2)

The same procedure was followed in [14] to determine the
correlation matrix between the two πK scattering lengths.
For the ππ scattering amplitude, we obtain the follow-

ing values and errors for the amplitude at the limits of the
subthreshold region (s, t, u):

(
2M2π,M

2
π ,M

2
π

)
A= 2.84±0.16 , (B.3)(

M2π/2, 3/2M
2
π, 3/2M

2
π

)
A=−1.03±0.12 ,

(B.4)(
M2π/2, 3M

2
π,M

2
π/2
)
A=−1.08±0.11 . (B.5)
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For πK scattering, we have in a similar way

(
M2K , 2M

2
π,M

2
K

)
B = 4.09±0.64, C = 0 ,

(B.6)(
M2K , 0,M

2
K+2M

2
π

)
B = 2.96±0.60 , (B.7)

C =−0.95±0.03 ,(
M2K +M

2
π, 0,M

2
K+M

2
π

)
B = 2.61±0.60, C = 0 .

(B.8)

The zeroes of C are due to its antisymmetry under s–u ex-
change. Uncertainties are correlated.

Appendix C: Treatment of correlated data

We expect strong correlations among the data points. This
is reflected by the fact that the matrix C is nearly degen-
erate and therefore cannot be inverted easily. In order to
treat this problem, one can diagonalize4 the matrix C:

C = UDUT , D = diag(λ1, . . . , λn) , (C.1)

UUT = UTU = 1 , (C.2)

which yields the corresponding likelihood:

L(∆V ) = exp

[
−
1

2
∆V T C−1 ∆V

]
/
√
det(2πC) (C.3)

= exp

[
−
1

2
∆V TUD−1UT∆V

]
/
√
det(2πC) .

(C.4)

Let us split the set of eigenvalues in two categories:
large eigenvalues of order 1, collected in the diagonal ma-
trix D̃, and almost vanishing eigenvalues, smaller than
a cut-off and gathered in the diagonal matrixD0:

D = D̃+D0 , C̃ = UD̃U
T , C0 = UD0U

T . (C.5)

The eigenvalues in D0 are responsible for the near de-
generacy of the matrix. In the corresponding directions,
the exponential could be approximated with a Dirac distri-
bution and would yield constraints on NNLO and higher-
order remainders. Our approximation by a low-degree
polynomial is expected to hold at the level of a few per-
cent: numerically, a perfect agreement between data and
experiment occurs already if ∆V = O(1%). Therefore, we
cannot make much use of eigenvalues of the covariance
matrix much smaller than (1%)2 = 10−4. This leads us to
put a limit on the analysis to the subspace where D̃ is
non-vanishing and to define on this subspace D−1 ≡ D̃−1

(see Chapter 2.6 in [70] for a more detailed discussion on
the relationships between singular value decomposition
and matrix inversion). We chose to set the limit between

4 In practice, we use the singular value decomposition
method described in [70], which introduces two different rota-
tion matrices on the left and on the right. This slight modifica-
tion does not alter the procedure outlined in this section.

small and large eigenvalues of order 10−8 (with only a very
mild dependence of our results on the exact value of the
cut-off).

Appendix D: Impact of combining ππ
and πK data
for marginal CL profiles

As shown in Sect. 5.1, the analysis of ππ data in our frame-
work puts a lower bound on r (r ≥ 12 at 68% CL), and an
upper bound on X(3) and Z(3) (below 0.85 and 0.95 re-
spectively). πK scattering does seem to bring only a lower
bound on X(3). The combination of these two pieces of
information proves to be much more powerful and allows
one to extract CL intervals on r, X(3), Y (3) and Z(3). In-
deed, we recall that our statistical method, inspired by the
Rfit approach [17], consists in the following steps: deter-
mine the absolute minimum of χ2 first, then fix a particular
theoretical parameter a (among r, X(3), Y (3), Z(3)) and
compute the corresponding relative minimum of χ2, finally
extract a CL (actually a P -value [18, 19] from the difference
between the two values of χ2. This amounts to computing

CL[a|data] =MaxµCL[a;µ|data] , (D.1)

where µ collects all the remaining theoretical parameters
(including Li and NNLO remainders). Therefore, the CL
profiles obtained in our approach correspond to upper
bounds on the CLs. In particular, it is enough that one set
of theoretical parameters µ yields the same value of χ2 as
the absolute minimum to get CL(a) = 1.
We have many theoretical parameters for the descrip-

tion of the scattering amplitudes: in addition to r, X(3)
and Z(3), we have the O(p4) LECs L1,2,3 and (direct and
indirect) NNLO remainders. Therefore, it is not particu-
larly surprising that either ππ or πK scattering alone is
not enough to simultaneously put constraints on all these
parameters: many equivalent situations (with identical χ2

and thus CL) can be obtained with different sets of the-
oretical parameters. This degeneracy, in particular for the
minimum χ2, comes from the possibility of compensating
a variation in a by a modification of the remaining theoret-
ical parameters µwithin the allowed ranges, which tends to
yield flat CL profiles when we consider only one amplitude.
This underdetermination of the theoretical parameters

– and the resulting degeneracy in CL values – is lifted
once several sets of different sources are considered. In the
present case, ππ data put constraints on the quark mass
ratio r and on some of the O(p4) derivative couplings. Be-
cause of these constraints, the regions of theoretical pa-
rameters with identical CLs are reduced, and thus the CL
curves associated with πK scattering exhibit more distinc-
tive features.
As an illustration of this phenomenon, we compute the

CL for πK data alone with L1, L2, L3 and r fixed to spe-
cific values, in order to mimic the interplay between the ππ
and πK data in the CL curves. Let us set L1, L2 and L3 to
the values corresponding to the absolute minimum of the
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χ2 when both ππ and πK data are considered:

Lr1(Mρ) =−0.31×10
−3 ,

Lr2(Mρ) = 2.12×10
−3 , (D.2)

Lr3(Mρ) =−0.64×10
−3 ,

and let us set r equal to the four different values r =
10, 20, 30, 35. With these theoretical parameters fixed, we
determine CL[X(3); r, L1,2,3|πK] and CL[Z(3); r, L1,2,3|
πK] profiles, which are drawn in Fig. 3. We can see that
the CL profiles of X(3) and Z(3) for r = 20 are very simi-
lar to the solid lines shown in Figs. 1 and 2, corresponding
to CL[X(3)|ππ, πK] and CL[Z(3)|ππ, πK]. On the other
hand, the curves for r = 10, 30, 35 are somewhat broader
and flatter.
The CL curves obtained for πK scattering in Figs. 1

and 2 are CL[X(3)|πK] and CL[Z(3)|πK], which corres-
pond to the envelope of all the CL profiles of the form

Fig. 3. CL profiles for X(3) = 2mΣ(3)/(F 2πM
2
π (top) and

Z(3) = F 20 /F
2
π (bottom), obtained from the combination of

the experimental information on ππ and πK scatterings, with

L1, L2, L3 set to the values minimizing the complete χ
2 (see

text). The four curves correspond to the four different (im-
posed) values of r = 10, 20, 30, 35. The two horizontal lines
indicate the confidence intervals at 68 and 95% CL

CL[X(3); r, L1,2,3|πK] and CL[Z(3); r, L1,2,3|πK] when
varying r (and L1,2,3). This superposition, dominated
by values of r around 35, eventually yields the flat pro-
files in X(3) and Z(3) observed in Figs. 1 and 2. On the
other hand, when we combine ππ and πK scatterings,
a value of r around 20 is preferred by the ππ data (to-
gether with some ranges for L1,2,3). Therefore, the con-
tribution from πK scattering to CL[X(3)|ππ, πK] and
CL[Z(3)|ππ, πK] is close to the CL curve obtained for
CL[X(3); r = 20, L1,2,3|πK] and CL[Z(3); r = 20, L1,2,3|
πK], i.e. r = 20 in Fig. 3. This phenomenon explains how
the information on the theoretical parameters can be hid-
den in πK scattering but is unveiled once combined with
ππ scattering, lifting the degeneracy in the CLs and lead-
ing to a sharper determination ofX(3) and Z(3).
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